

What is Language Model?

How do we make the machine generate language quickly?

Konrad Handrick

Workshop 2: stepping stone in AI

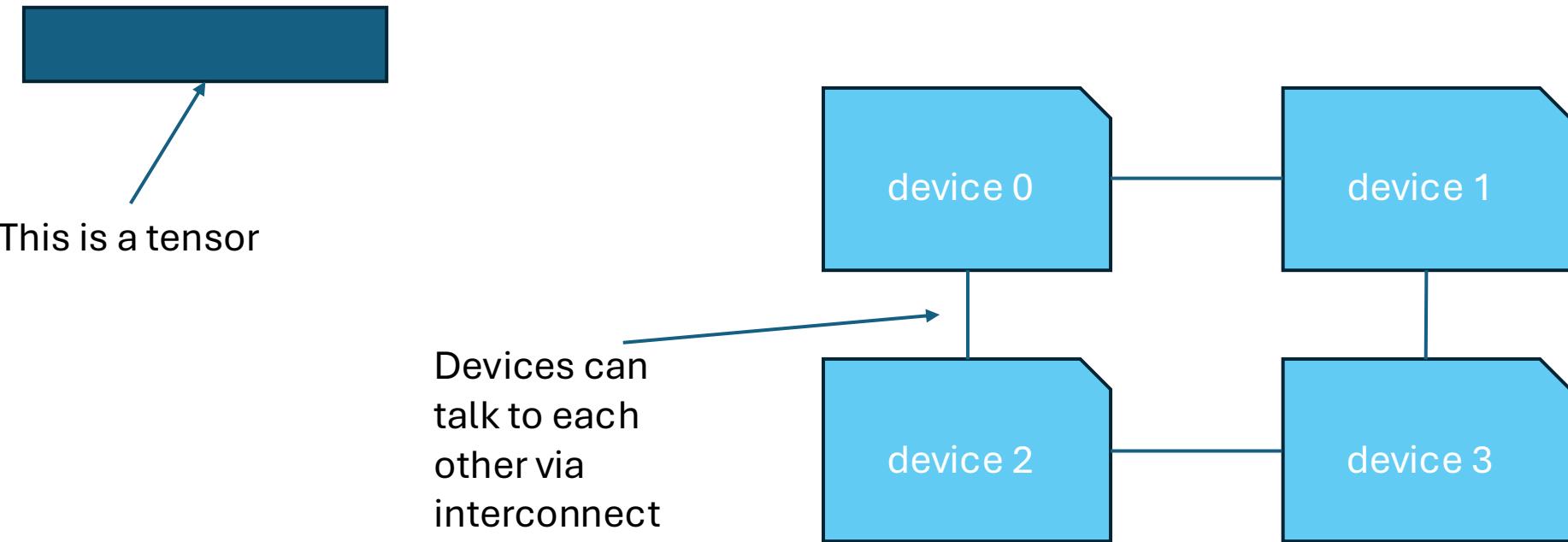
November 2025

Today's menu

1. Distributed computing primitives
2. What's a Language Model?
3. How do we split a Language Model on several devices?
4. Next steps

First: Distributed Computing & tensors

Reminder: Everything is Linear Algebra. For all intents and purposes in this section, a tensor is an array.



First: Distributed Computing & tensors

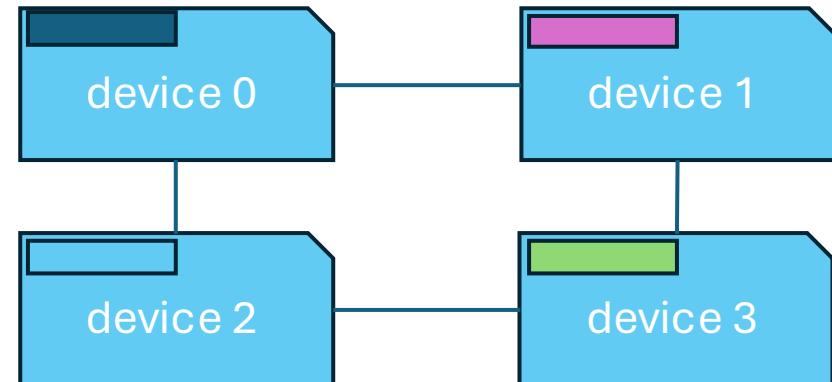
Reminder: Everything is Linear Algebra. For all intents and purposes in this section, a tensor is an array.

This is a sharded tensor

Often people use the nomenclature
“tensor X sits on rank 0”

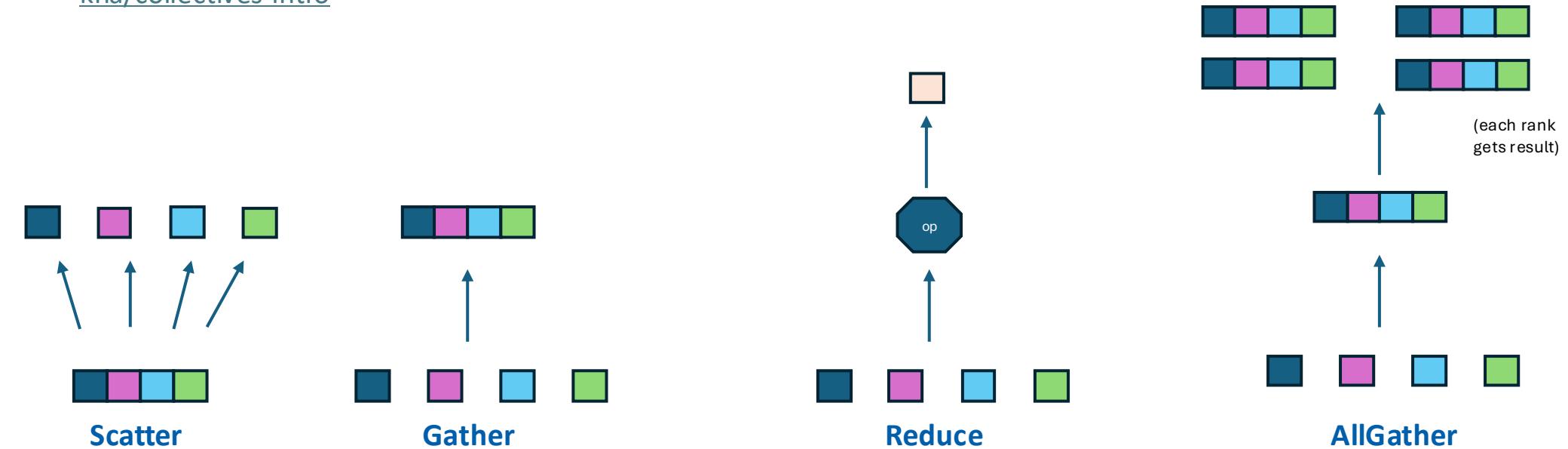
different color now indicates location of a
tensor on different device / rank /
machine

“device mesh”

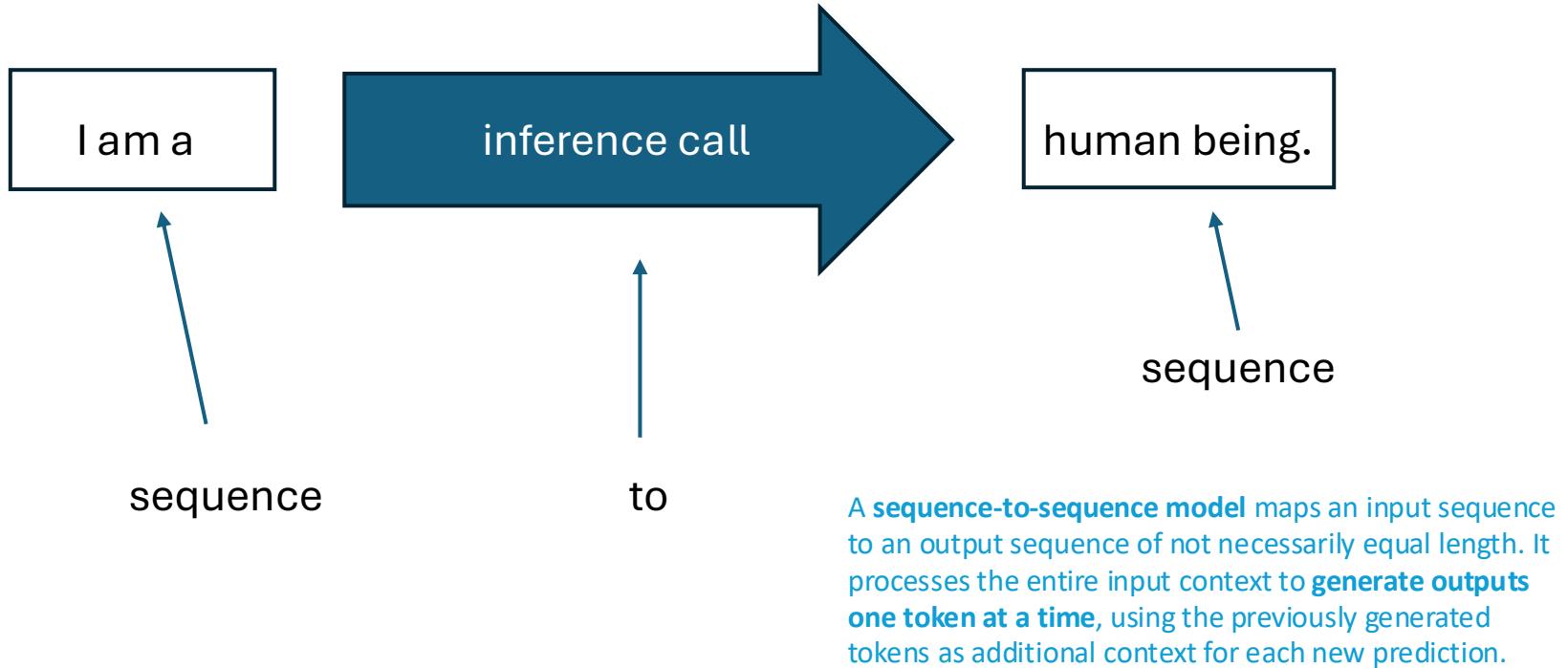


First: Distributed Computing & tensors

Why do we care? Collective operations make up a large part in multi-GPU settings. We'll use the language introduced here to describe operations in later steps. For more, with code examples, see <https://git.stepping-stone.ch/ejukha/collectives-intro>



What's a Language Model?

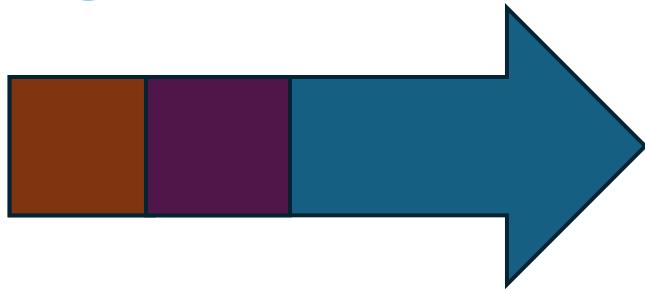


More text and nice pictures: <https://jalammar.github.io/illustrated-transformer/>

What's a Language Model?

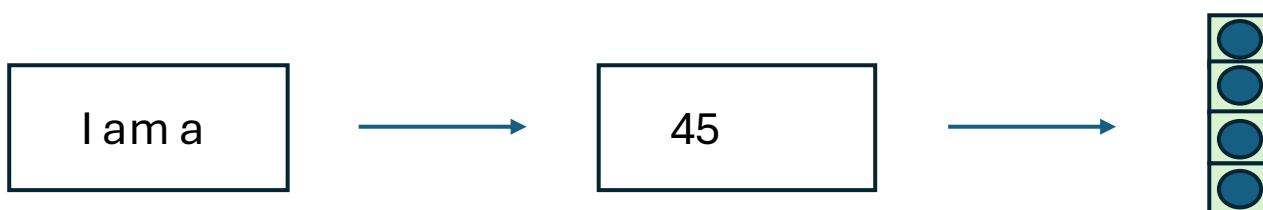


What's a Language Model?



Tokenizer: Procedure (highly dependent on data) that maps tokens (syllables / words / sub-phrases) onto numbers. Usually people use BPE or SentencePiece (e.g. see <https://github.com/google/sentencepiece>)

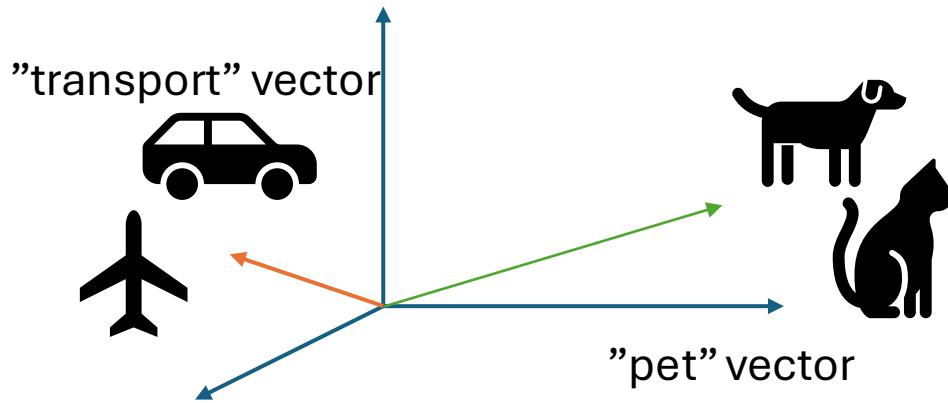
Positional Encoding: Injects information about token position relative to its context. (e.g. see <https://shreyashkar-ml.github.io/posts/rope/>)



Initial step:
Transform "phrases" into "embeddings" in "latent space".

Embeddings & Latent space

Embedding in latent space



Language lives in a high-dimensional space.

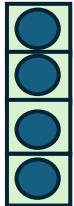
Embedding: A learned mapping from tokens to continuous vectors that preserves semantic relationships.

Latent Space: The vector space where embeddings and hidden representations live, such that semantic similarity corresponds to geometric proximity.

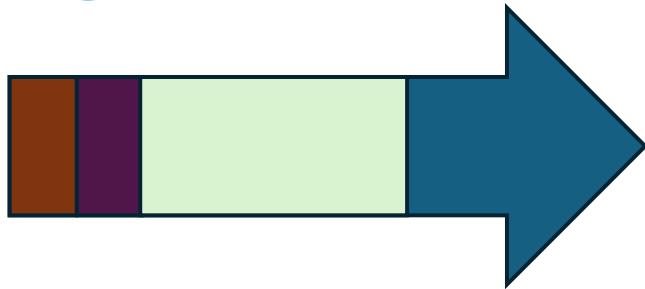
What's a Language Model?

Attention Is All You Need

Transformer



Embedding in latent
space



$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

probabilities (a.k.a. *autoregressive decomposition* [3]):

$$P(x) = P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_1, \dots, x_{n-1}). \quad (1)$$

Screenshots from: <https://arxiv.org/abs/1706.03762>

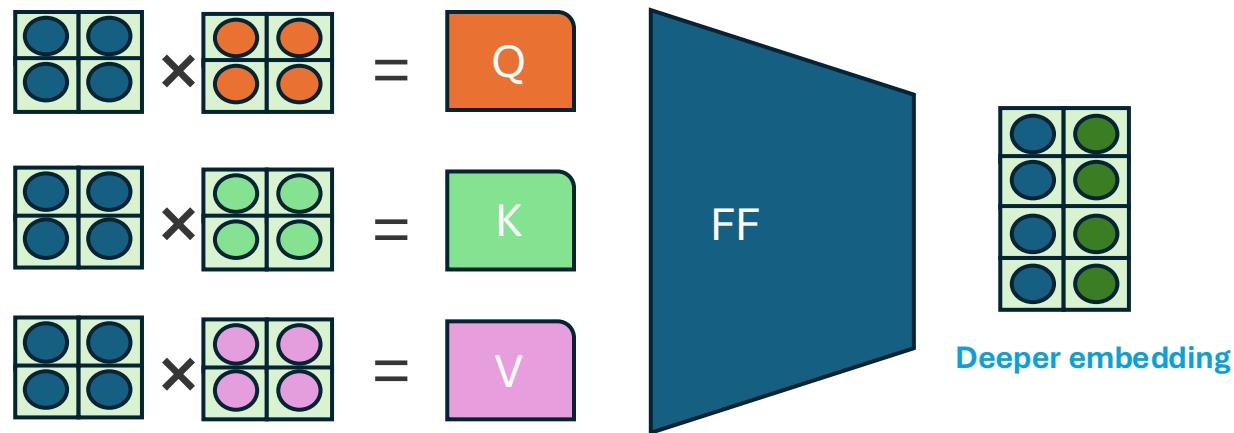
Attention in detail

Transformer

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

A vertical column of four solid blue circles, each with a thin white outline, arranged one above the other.

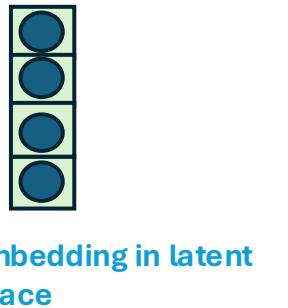
Embedding in latent space



Attention in detail

Transformer

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$



$$\begin{array}{c} \begin{array}{|c|c|c|} \hline \text{Blue} & \text{Blue} & \text{Blue} \\ \hline \text{Blue} & \text{Blue} & \text{Blue} \\ \hline \end{array} & \times & \begin{array}{|c|c|c|} \hline \text{Orange} & \text{Orange} & \text{Orange} \\ \hline \text{Orange} & \text{Orange} & \text{Orange} \\ \hline \end{array} & = & \begin{array}{|c|} \hline \text{Q} \\ \hline \end{array} \\ \hline \end{array}$$
$$\begin{array}{c} \begin{array}{|c|c|c|} \hline \text{Blue} & \text{Blue} & \text{Blue} \\ \hline \text{Blue} & \text{Blue} & \text{Blue} \\ \hline \end{array} & \times & \begin{array}{|c|c|c|} \hline \text{Green} & \text{Green} & \text{Green} \\ \hline \text{Green} & \text{Green} & \text{Green} \\ \hline \end{array} & = & \begin{array}{|c|} \hline \text{K} \\ \hline \end{array} \\ \hline \end{array}$$
$$\begin{array}{c} \begin{array}{|c|c|c|} \hline \text{Blue} & \text{Blue} & \text{Blue} \\ \hline \text{Blue} & \text{Blue} & \text{Blue} \\ \hline \end{array} & \times & \begin{array}{|c|c|c|} \hline \text{Purple} & \text{Purple} & \text{Purple} \\ \hline \text{Purple} & \text{Purple} & \text{Purple} \\ \hline \end{array} & = & \begin{array}{|c|} \hline \text{V} \\ \hline \end{array} \\ \hline \end{array}$$

K_i, V_i depend on the previous i-1 steps of the calculation – hence we can / should cache them!

Right: <https://arxiv.org/abs/2412.19437>

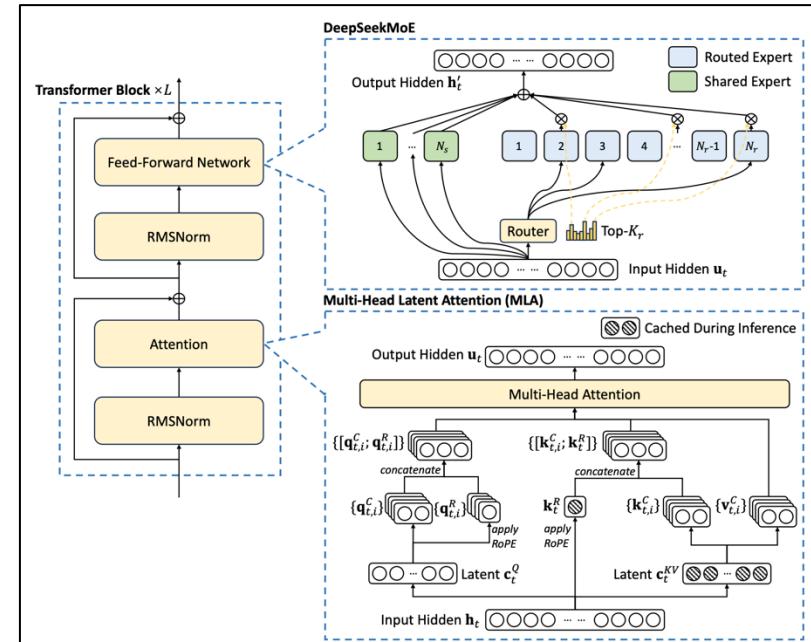
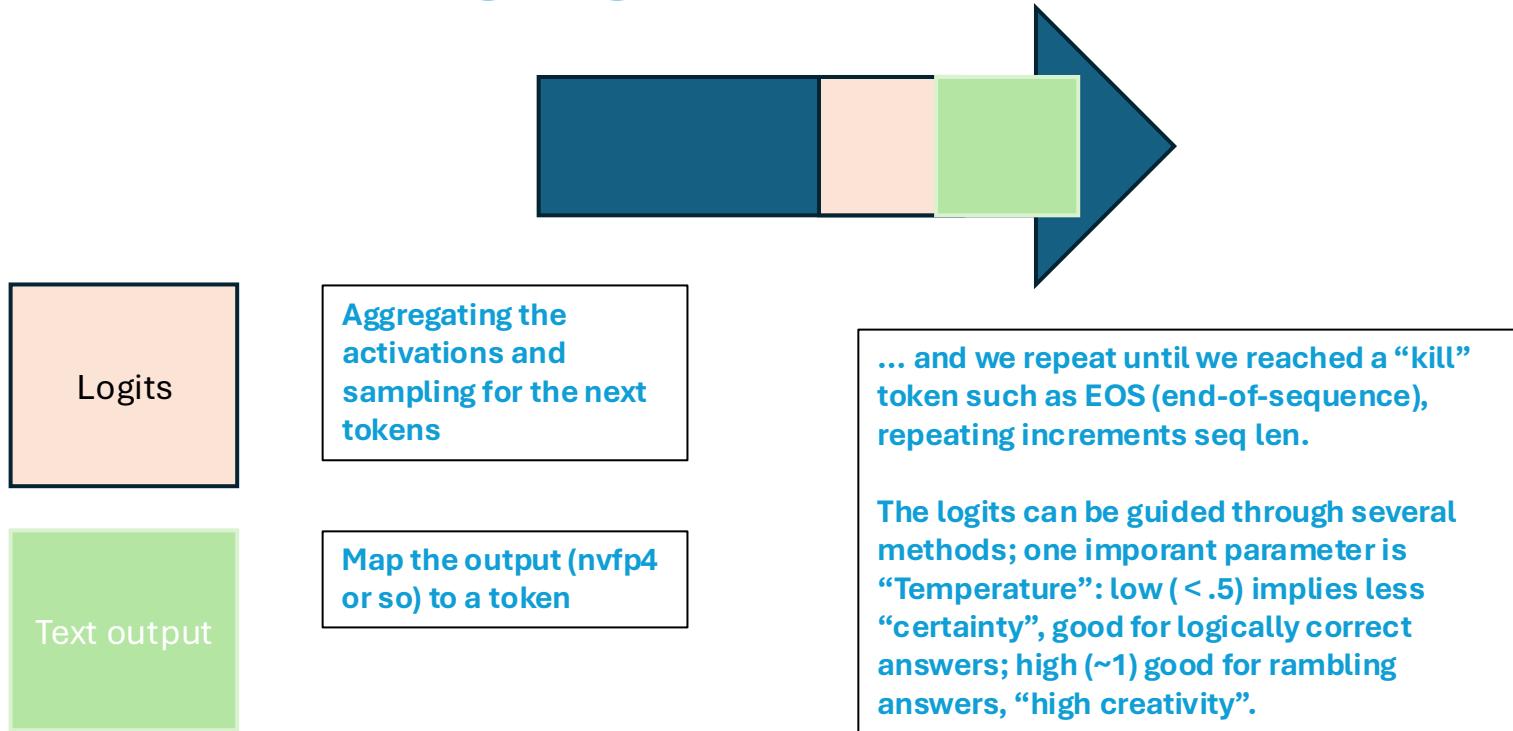


Figure 2 | Illustration of the basic architecture of DeepSeek-V3. Following DeepSeek-V2, we

What's a Language Model?



What's a Language Model?

1. Prompt phase.

Take in a user's n tokens and fill (K, V) -cache. x_{n+1} depends on all of them, hence this can be massively parallel.

2. Autoregressive Generation.

x_{n+t} depends on all of x_{n+t-1}, \dots, x_1 . This phase completes upon either EOS or reaching max seq_len.

Time to first token: How snappy is the model?

Tokens per second: How long do I have to wait for the thing to finish?

What's a Language Model?

Dimensions

How do we get to 7B, or even 450B parameters? (always look inside config.json on HF)

Let's do DeepSeek-v3 (**671B** apparently):

Token embedding (in & out): vocabulary 128000, hidden dim = 7168 $\rightarrow 2 \times 128000 \times 7168 \sim 1.835 \text{ B}$

Attn, MLA: weight matrices for the attention mechanisms 11.41 B over 61 layers

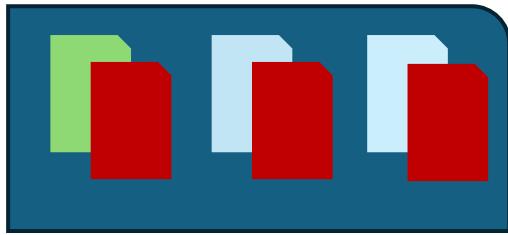
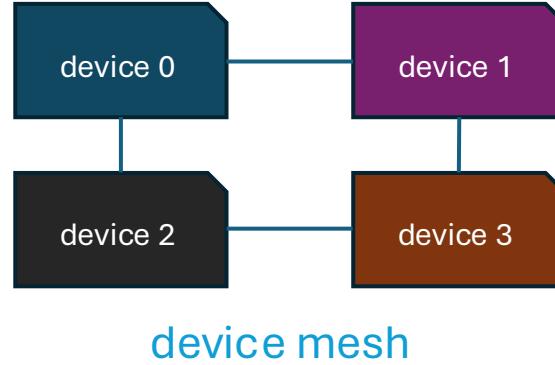
Dense FF (x3): $d \times (2 \times 18432 + 18432) \sim 1.2\text{B}$

MoE FF: $(256 + 1) \times 44.04 \text{ M} \times 58 \sim 656 \text{ B}$ (and we have to smartly count them all together)

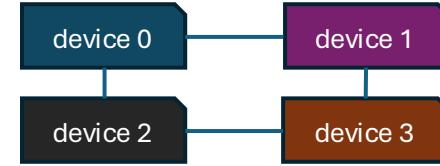
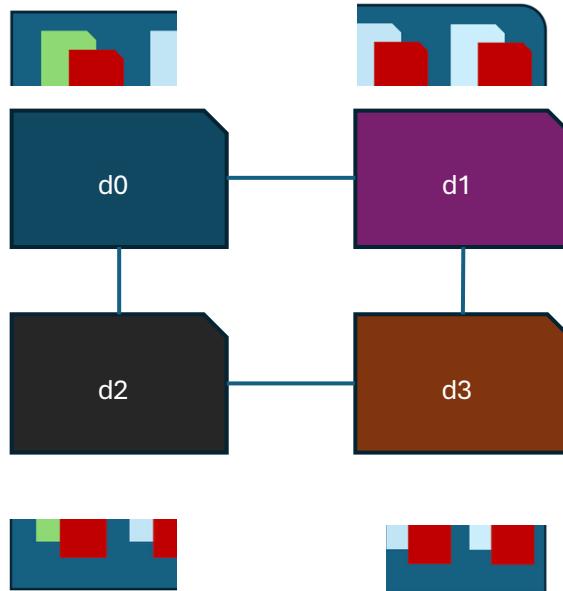
Parallelism Strategies

How do we get our model onto X devices?

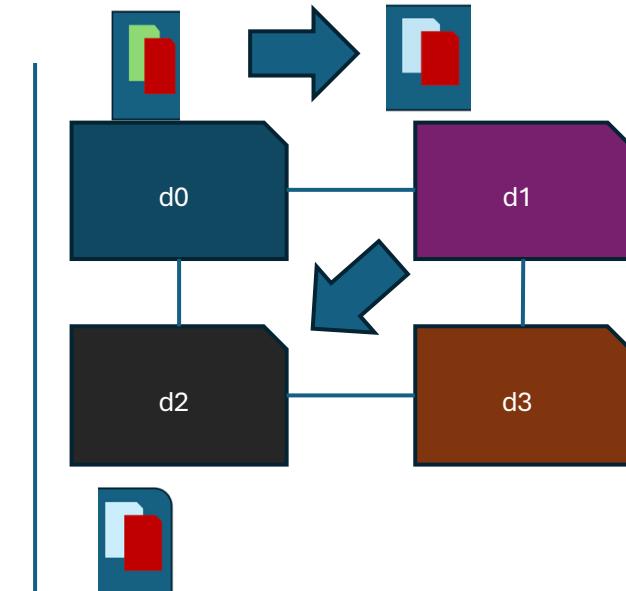
And what operations does that imply?



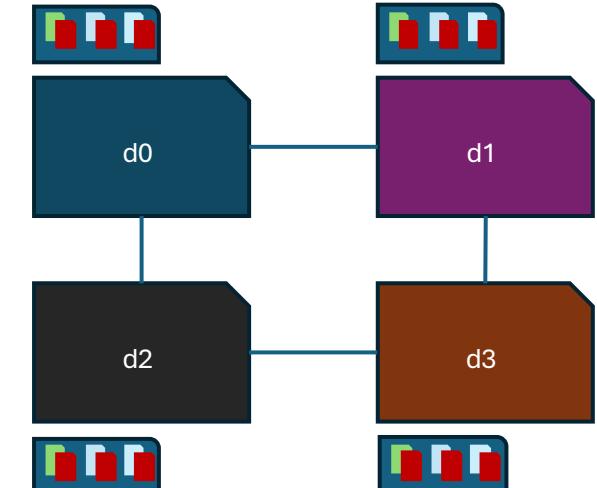
Parallelism Strategies



Tensor Parallelism (TP)

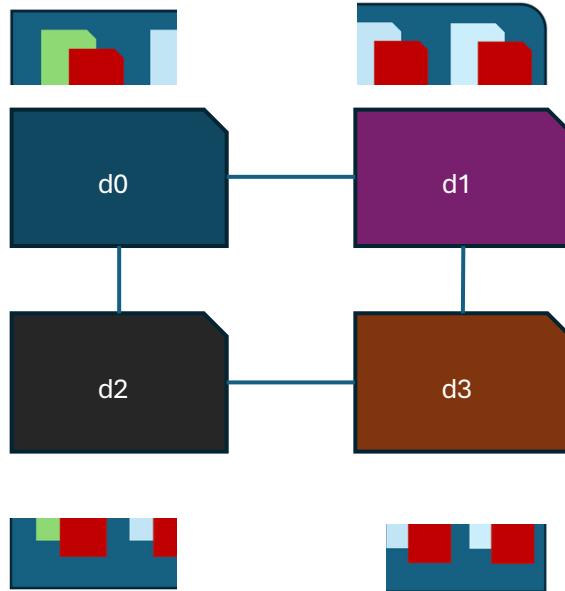


Pipeline Parallelism (PP)

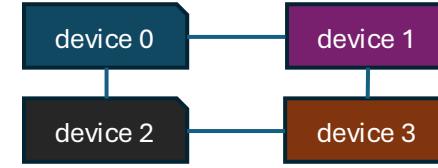


Expert Parallelism (EP)

Parallelism Strategies

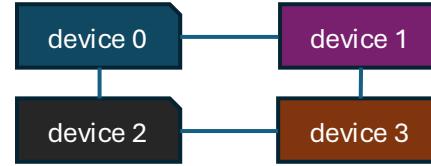


Tensor Parallelism (TP)

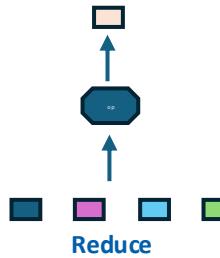


Let's split a pooling operation via tensor parallelism.

Parallelism Strategies



For every norm or
pooling layer an
AllReduce



Tensor Parallelism (TP)

Sequentially
bottlenecked

Embeddings or
activations might be
large and need to be
reduced / gathered

Pipeline Parallelism (PP)

Expert Parallelism (EP)

What's a Language Model?

Dimensions

How do we get to 7B, or even 450B parameters?

Let's do DeepSeek-v3 (**671B** apparently):

KV Cache calculation

B=16, L=61, c_kv=512, kr=64.

We deduce the size for the KV cache to behave as:

$B \times L \times (c_kv + kr) \times 2 \sim 1.07 \text{ MB / tok}$

Prefill is a parameter we set when serving:
 $S = 1024$ yields about 1GB.

Let's assume 8 GPUs,
TP=2, EP=4 and
batch_size=16, bf16.

Number of collective calls:

Attn = 1 allreduce; FFN = 1 allreduce; MoE
FF: 8 + 1 experts, dispatch + combine,
58x2 (up & down) all-to-all

$d=7168, E=8$ hence per GPU we send

$108 \times 7168 \times 2 \times (1 + 1) \times 2 \times 58 + 61 * 16 * 7168 \sim 171 \text{ MB / token / GPU}$

Takeaways & Glossary

Takeaways

Glossary

In the next workshop we'll see

1. ML frameworks
2. LLM inference frameworks
3. Optimizations in LLM inference frameworks
 1. KV caches and PagedAttention
 2. Finding **good** parameter sets for LLMs
 3. LLM inference arithmetic: We will learn more about what I jumped through earlier
1. And next up: RAG, fine-tuning with RLHF and LoRA

More todos

1. exact annotation of LLMs
2. LLM mechanics deeper
3. diffusion models in general but quick (images + VLM + ...)
4. hybrid models?

stepping stone AG

Wasserwerksgasse 7

CH-3011 Bern

Telefon: +41 31 332 53 63

www.stepping-stone.ch

info@stepping-stone.ch